Optical misalignment sensing and image reconstruction using phase diversity
نویسندگان
چکیده
A segmented-aperture telescope such as the Multiple-Mirror Telescope will suffer from phase errors unless the segments are aligned to within a small fraction of a wavelength. Such a coherent alignment of the segments is difficult to achieve in real time. An alternative is to record the images degraded by phase errors and to restore them after detection by using phase-retrieval techniques. In this paper we describe the use of Gonsalves's phasediversity method (which was previously used to combat atmospheric turbulence) to correct imagery blurred by a misaligned segmented-aperture telescope. Two images are recorded simultaneously: the usual degraded image in the focal plane and a second degraded image in an out-of-focus plane. An iterative gradient-search algorithm finds the phase error of the telescope that is consistent with both degraded images. We refer to this technique as the method of multiple-plane measurements with iterative reconstruction. The final image is obtained by a WienerHelstrom filtering of the degraded image using the retrieved phase errors. The results of reconstruction experiments performed with simulated data including the effects of noise are shown for the case of random piston phase errors on each of six segments.
منابع مشابه
Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients
Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...
متن کاملFast Reconstruction of SAR Images with Phase Error Using Sparse Representation
In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...
متن کاملPhase Only Synthesis of Antenna Patterns Using Iterative Restoration Methods
In this work, the method of iterative Fourier transform phase reconstruction, conventionally used in holography and optical image reconstruction, is applied to phase only synthesis of antenna patterns. The method is applied to two types of pattern synthesis problems: "main lobe beam shaping" and "side-lobe-level reduction". The proposed method is most useful in the efficient employment of attai...
متن کاملAn Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems
The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first ti...
متن کاملPhase-error estimation and image reconstruction from digital-holography data using a Bayesian framework
The estimation of phase errors from digital-holography data is critical for applications such as imaging or wavefront sensing. Conventional techniques require multiple i.i.d. data and perform poorly in the presence of high noise or large phase errors. In this paper, we propose a method to estimate isoplanatic phase errors from a single data realization. We develop a model-based iterative recons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002